Gaussian Regularized Sliced Inverse Regression
نویسندگان
چکیده
Sliced Inverse Regression (SIR) is an effective method for dimension reduction in high-dimensional regression problems. The original method, however, requires the inversion of the predictors covariance matrix. In case of collinearity between these predictors or small sample sizes compared to the dimension, the inversion is not possible and a regularization technique has to be used. Our approach is based on a Fisher Lecture given by R.D. Cook where it is shown that SIR axes can be interpreted as solutions of an inverse regression problem. We propose to introduce a Gaussian prior distribution on the unknown parameters of the inverse regression problem in order to regularize their estimation. We show that some existing SIR regularizations can enter our framework, which permits a global understanding of these methods. Three new priors are proposed leading to new regularizations of the SIR method. A comparison on simulated data as well as an application to the estimation of Mars surface physical properties from hyperspectral images are provided.
منابع مشابه
Inverting hyperspectral images with Gaussian Regularized Sliced Inverse Regression
In the context of hyperspectral image analysis in planetology, we show how to estimate the physical parameters that generate the spectral infrared signal reflected by Mars. The training approach we develop is based on the estimation of the functional relationship between parameters and spectra, using a database of synthetic spectra generated by a physical model. The high dimension of spectra is...
متن کاملCluster-based regularized sliced inverse regression for forecasting macroeconomic variables
This article concerns the dimension reduction in regression for large dataset. We introduce a new method based on the sliced inverse regression approach, called cluster-based regularized sliced inverse regression. Our method not only keeps the merit of considering both response and predictors information, but also enhances the capability of handling highly correlated variables. It is justified ...
متن کاملConsistency of regularized sliced inverse regression for kernel models
We develop an extension of the sliced inverse regression (SIR) framework for dimension reduction using kernel models and Tikhonov regularization. The result is a numerically stable nonlinear dimension reduction method. We prove consistency of the method under weak conditions even when the reproducing kernel Hilbert space induced by the kernel is infinite dimensional. We illustrate the utility o...
متن کاملL1-Regularized Least Squares for Support Recovery of High Dimensional Single Index Models with Gaussian Designs
It is known that for a certain class of single index models (SIMs) [Formula: see text], support recovery is impossible when X ~ 𝒩(0, 𝕀 p×p ) and a model complexity adjusted sample size is below a critical threshold. Recently, optimal algorithms based on Sliced Inverse Regression (SIR) were suggested. These algorithms work provably under the assumption that the design X comes from an i.i.d. Gaus...
متن کاملRSIR: regularized sliced inverse regression for motif discovery
MOTIVATION Identification of transcription factor binding motifs (TFBMs) is a crucial first step towards the understanding of regulatory circuitries controlling the expression of genes. In this paper, we propose a novel procedure called regularized sliced inverse regression (RSIR) for identifying TFBMs. RSIR follows a recent trend to combine information contained in both gene expression measure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics and Computing
دوره 19 شماره
صفحات -
تاریخ انتشار 2009